TPU-MLIR是一种专用于处理器的TPU编译器。该编译器项目提供了一个完整的工具链,可以将来自不同深度学习框架(PyTorch, ONNX, TFLite和Caffe)的各种预训练神经网络模型转换为高效的模型文件(bmodel/cvimodel),以便在SOPHON TPU上运行。通过量化到不同精度的bmodel/cvimodel,优化了模型在sophon计算TPU上的加速和性能。这使得可以将与对象检测、语义分割和对象跟踪相关的各种模型部署到底层硬件上以实现加速。
本课程主要分为三个部分:
本课程旨在通过实际演示,全面、直观地展示TPU- mlir编译器的使用方法,使学生能够快速理解各种深度学习模型算法的转换和量化,以及它们在SOPHGO计算处理器TPU上的部署测试。目前,TPU-MLIR的使用已应用于由SOPHGO开发的最新一代深度学习处理器BM168X和CV18XX,并辅以处理器的高性能ARM内核和相应的SDK,用于快速部署深度学习算法。
本课程在模型移植和部署方面的优势:
1. 支持多种深度学习框架
目前支持的框架包括PyTorch、ONNX、TFLite和Caffe。来自其他框架的模型需要转换为ONNX模型。有关将其他深度学习架构的网络模型转换为ONNX的指导,请参考ONNX官方网站:https://github.com/onnx/tutorials。
2. 用户友好的操作
通过开发手册和相关部署案例了解TPU-MLIR的原理和操作步骤,可以从头开始进行模型部署。熟悉Linux命令和模型编译量化命令对于动手实践是足够的。
3. 简化量化部署步骤
模型转换需要在SOPHGO提供的docker中执行,主要包括两个步骤:使用model_transform.py将原始模型转换为MLIR文件,使用model_deploy.py将MLIR文件转换为bmodel格式。bmodel是可以在SOPHGO TPU硬件上加速的模型文件格式。
4. 适应多种架构和硬件模式
量化的bmodel模型可以在PCIe和SOC模式下运行在TPU上进行性能测试。
5. 全面的文档
丰富的教学视频,包括详细的理论解释和实际操作,以及充足的指导和标准化的代码脚本,在课程中开放源代码,供所有用户学习。
SOPHON-SDK Development Guide | https://doc.sophgo.com/sdk-docs/v23.05.01/docs_latest_release/docs/SOPHONSDK_doc/en/html/index.html |
TPU-MLIR Quick Start Manual | https://doc.sophgo.com/sdk-docs/v23.05.01/docs_latest_release/docs/tpu-mlir/quick_start/en/html/index.html |
Example model repository | https://github.com/sophon-ai-algo/examples |
TPU-MLIR Official Repository | https://github.com/sophgo/tpu-mlir |
SOPHON-SDK Development Manual | https://doc.sophgo.com/sdk-docs/v23.05.01/docs_latest_release/docs/sophon-sail/docs/en/html/ |
完成本课程后,学生将具备以下能力:
深度学习爱好者或开源社区开发人员,具有一定的深度学习和Python开发基础,熟悉Docker和Linux操作。用户可以在使用它的同时为本课程的改进做出贡献,与SOPHGO合作构建一个先进的时代深度学习编译器。
作为框架和硬件之间的桥梁,深度学习编译器可以实现一次性代码开发和重用各种计算能力处理器的目标。最近,算能也开源了自己开发的TPU编译工具——TPU-MLIR (Multi-Level Intermediate Representation)。TPU-MLIR是一个面向深度学习处理器的开源TPU编译器。该项目提供了完整的工具链,将各种框架下预训练的神经网络转换为可在TPU中高效运行的二进制文件bmodel,以实现更高效的推理。本课程以实际实践为驱动,引导您直观地理解、实践、掌握智能深度学习处理器的TPU编译框架。
目前,TPU-MLIR项目已应用于算能开发的最新一代深度学习处理器BM1684X。结合处理器本身的高性能ARM内核以及相应的SDK,可以实现深度学习算法的快速部署。本课程将介绍MLIR的基本语法,以及编译器中各种优化操作的实现细节,如图形优化、int8量化、算子分割、地址分配等。
与其他编译工具相比,TPU-MLIR有几个优点
1. 简单方便
通过阅读开发手册和项目中包含的示例,用户可以了解模型转换的过程和原理,并快速入门。此外,TPU-MLIR是基于当前主流编译工具库MLIR设计的,用户也可以通过它了解MLIR的应用。本项目提供了一套完整的工具链,用户可直接通过现有接口快速完成模型转换工作,无需适应不同的网络。
2. 通用性
目前,TPU- mlir已经支持TFLite和onnx两种格式,这两种格式的模型可以直接转换为TPU可用的bmodel。如果不是这两种格式呢?事实上,onnx提供了一套转换工具,可以将目前市场上主要的深度学习框架编写的模型转换为onnx格式,然后再进行bmodel转换。
3、精度与效率并存
在模型转换过程中,有时会失去精度。TPU-MLIR支持INT8对称和非对称量化,结合原开发公司的校准和tune技术,大大提高了性能,保证了模型的高精度。此外,TPU-MLIR还使用了大量的图优化和算子分割优化技术来保证模型的高效运行。
4. 实现终极性价比,构建下一代深度学习编译器
为了支持图形化计算,神经网络模型中的算子需要开发图形化版本;为了适应TPU,应该为每个运营商开发一个版本的TPU。此外,有些场景需要适应相同计算能力处理器的不同型号,每次都必须手工编译,这将非常耗时。深度学习编译器就是用来解决这些问题的。TPU-mlir的一系列自动优化工具可以节省大量的人工优化时间,因此在RISC-V上开发的模型可以顺利自由地移植到TPU上,以获得最佳的性能和性价比。
5. 完整的信息
课程包括中英文视频教学、文档指导、代码脚本等,详实丰富的视频资料详细应用指导清晰的代码脚本TPU-MLIR站在MLIR巨头的肩膀上打造,现在整个项目的所有代码都已经开源,免费向所有用户开放。
代码下载链接:https://github.com/sophgo/tpu-mlir
tpu - mlir开发参考手册:https://tpumlir.org/docs/developer_manual/01_introduction.html
总体设计思想论文:https://arxiv.org/abs/2210.15016
视频教程:https://space.bilibili.com/1829795304/channel/collectiondetail?sid=734875
课程目录
序号 | 课程名 | 课程分类 | 课程资料 | ||
视频 | 文档 | 代码 | |||
1.1 | Deep learning编译器基础 | TPU_MLIR基础 | √ | √ | √ |
1.2 | MLIR基础 | TPU_MLIR基础 | √ | √ | √ |
1.3 | MLIR基本结构 | TPU_MLIR基础 | √ | √ | √ |
1.4 | MLIR之op定义 | TPU_MLIR基础 | √ | √ | √ |
1.5 | TPU_MLIR介绍(一) | TPU_MLIR基础 | √ | √ | √ |
1.6 | TPU_MLIR介绍(二) | TPU_MLIR基础 | √ | √ | √ |
1.7 | TPU_MLIR介绍(三) | TPU_MLIR基础 | √ | √ | √ |
1.8 | 量化概述 | TPU_MLIR基础 | √ | √ | √ |
1.9 | 量化推导 | TPU_MLIR基础 | √ | √ | √ |
1.10 | 量化校准 | TPU_MLIR基础 | √ | √ | √ |
1.11 | 量化感知训练(一) | TPU_MLIR基础 | √ | √ | √ |
1.12 | 量化感知训练(二) | TPU_MLIR基础 | √ | √ | √ |
2.1 | Pattern Rewriting | TPU_MLIR实战 | √ | √ | √ |
2.2 | Dialect Conversion | TPU_MLIR实战 | √ | √ | √ |
2.3 | 前端转换 | TPU_MLIR实战 | √ | √ | √ |
2.4 | Lowering in TPU_MLIR | TPU_MLIR实战 | √ | √ | √ |
2.5 | 添加新算子 | TPU_MLIR实战 | √ | √ | √ |
2.6 | TPU_MLIR图优化 | TPU_MLIR实战 | √ | √ | √ |
2.7 | TPU_MLIR常用操作 | TPU_MLIR实战 | √ | √ | √ |
2.8 | TPU原理(一) | TPU_MLIR实战 | √ | √ | √ |
2.9 | TPU原理(二) | TPU_MLIR实战 | √ | √ | √ |
2.10 | 后端算子实现 | TPU_MLIR实战 | √ | √ | √ |
2.11 | TPU层优化 | TPU_MLIR实战 | √ | √ | √ |
2.12 | bmodel生成 | TPU_MLIR实战 | √ | √ | √ |
2.13 | To ONNX format | TPU_MLIR实战 | √ | √ | √ |
2.14 | Add a New Operator | TPU_MLIR实战 | √ | √ | √ |
2.15 | TPU_MLIR模型适配 | TPU_MLIR实战 | √ | √ | √ |
2.16 | Fuse Preprocess | TPU_MLIR实战 | √ | √ | √ |
2.17 | 精度验证 | TPU_MLIR实战 | √ | √ | √ |
本课程介绍了硬件电路的设计和基本环境的搭建,并提供了一些简单的开发示例和一些基本的深度学习示例。
Milk-V Duo是基于CV1800B的超小型嵌入式开发平台。它体积小,功能全面,配备双核,可以分别运行linux和rtos系统,并具有各种可连接的外设。
课程特点:
课程目录
深度神经网络模型可以快速训练和测试,然后由行业部署,在现实世界中有效地执行任务。在小型、低功耗的深度学习边缘计算平台上部署这样的系统受到业界的高度青睐。本课程采用实践驱动的方法,引导你直观地学习、实践和掌握深度神经网络的知识和技术。
SOPHON深度学习微服务器SE5是采用SOPHON自主研发的第三代TPU处理器BM1684的高性能、低功耗边缘计算产品。INT8运算能力高达17.6 TOPS,支持32路全高清视频硬件解码和2路编码。本课程将快速引导您了解SE5服务器的强大功能。通过本课程,您可以了解深度学习的基础知识并掌握其基本应用。
课程的特点
1. 一站式服务
在SE5应用程序中遇到的所有常见问题都可以在这里找到。
2. 系统的教学
它包括设置环境、开发应用程序、转换模型和部署产品,以及拥有镜像的实际环境等所有内容。
3. 完整的材料
本课程包括视频教程、文档指南、代码脚本和其他综合材料。
4. 免费的云开发资源
在线免费申请使用SE5-16微服务器云测试空间